Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.974
Filtrar
1.
Oncol Res ; 32(4): 643-658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560570

RESUMO

The platinum-based chemotherapy is one of the most frequently used treatment protocols for lung adenocarcinoma (LUAD), and chemoresistance, however, usually results in treatment failure and limits its application in the clinic. It has been shown that microRNAs (miRNAs) play a significant role in tumor chemoresistance. In this study, miR-125b was identified as a specific cisplatin (DDP)-resistant gene in LUAD, as indicated by the bioinformatics analysis and the real-time quantitative PCR assay. The decreased serum level of miR-125b in LUAD patients was correlated with the poor treatment response rate and short survival time. MiR-125b decreased the A549/DDP proliferation, and the multiple drug resistance- and autophagy-related protein expression levels, which were all reversed by the inhibition of miR-125b. In addition, xenografts of human tumors in nude mice were suppressed by miR-125b, demonstrating that through autophagy regulation, miR-125b could reverse the DDP resistance in LUAD cells, both in vitro and in vivo. Further mechanistic studies indicated that miR-125b directly repressed the expression levels of RORA and its downstream BNIP3L, which in turn inhibited autophagy and reversed chemoresistance. Based on these findings, miR-125b in combination with DDP might be an effective treatment option to overcome DDP resistance in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Proteínas Supressoras de Tumor , Animais , Camundongos , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Apoptose/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/genética
2.
Cell Biochem Funct ; 42(3): e3996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561942

RESUMO

Breast cancer (BC) poses a persistent global health challenge, particularly in countries with elevated human development indices linked to factors such as increased life expectancy, education, and wealth. Despite therapeutic progress, challenges persist, and the role of epitranscriptomic RNA modifications in BC remains inadequately understood. The epitranscriptome, comprising diverse posttranscriptional modifications on RNA molecules, holds the potential to intricately modulate RNA function and regulation, implicating dysregulation in various diseases, including BC. Noncoding RNAs (ncRNAs), acting as posttranscriptional regulators, influence physiological and pathological processes, including cancer. RNA modifications in long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) add an extra layer to gene expression control. This review delves into recent insights into epitranscriptomic RNA modifications, such as N-6-methyladenosine (m6A), adenine-to-inosine (A-to-I) editing, and 5-methylcytosine (m5C), specifically in the context of lncRNA and miRNAs in BC, highlighting their potential implications in BC development and progression. Understanding this intricate regulatory landscape is vital for deciphering the molecular mechanisms underlying BC and identifying potential therapeutic targets.


Assuntos
Adenina/análogos & derivados , Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia
3.
J Biochem Mol Toxicol ; 38(4): e23676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561971

RESUMO

Although the treatment of ovarian cancer has made great progress, there are still many patients who are not timely detected and given targeted therapy due to unknown pathogenesis. Recent studies have found that hsa_circ_0015326 is upregulated in ovarian cancer and is involved in the proliferation, invasion, and migration of ovarian cancer cells. However, whether hsa_circ_0015326 can be used as a new target of ovarian cancer needs further investigation. Therefore, the effect of hsa_circ_0015326 on epithelial ovarian cancer was investigated in this study. At first, si-hsa_circ_0015326 lentivirus was transfected into epithelial ovarian cancer cells. Then real-time fluorescence quantitative PCR (qRT-PCR) was used to detect hsa_circ_0015326 level. The proliferation of ovarian cancer cells was detected by CCK-8 assay. The horizontal and vertical migration abilities of the cells were detected by wound-healing assay and Transwell assay, respectively. Transwell assay was also used to determine the invasion rate. As for the apoptosis rate, it was assessed by flow cytometry. As a result, the expression level of hsa_circ_0015326 in A2780 and SKOV3 was found to be higher than that in IOSE-80. However, after transfecting si-hsa_circ_0015326 and si-NC into the cells, the proliferation, migration, and invasion abilities of A2780 and SKOV3 cells in the si-hsa_circ_0015326 group were significantly reduced in comparison to those in the si-NC and mock groups, while their apoptosis rates were elevated. Collectively, silencing hsa_circ_0015326 bears the capability of inhibiting the proliferation, migration, and invasion of ovarian cancer cells while increasing apoptosis rate. It can be concluded that hsa_circ_0015326 promotes the malignant biological activities of epithelial ovarian cancer cells.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , RNA/metabolismo , Carcinoma Epitelial do Ovário/genética , RNA Circular/genética , RNA Circular/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proliferação de Células , Apoptose , MicroRNAs/metabolismo , Movimento Celular
4.
BMC Oral Health ; 24(1): 406, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556858

RESUMO

BACKGROUND: Recent studies have indicated that microRNA (miRNA) expression in tumour tissues has prognostic significance in Tongue squamous cell carcinoma (TSCC) patients. This study explored the possible prognostic value of miRNAs for TSCC based on published research. METHODS: A comprehensive literature search of multiple databases was conducted according to predefined eligibility criteria. Data were extracted from the included studies by two researchers, and HR results were determined based on Kaplan‒Meier curves according to the Tierney method. The Newcastle‒Ottawa Scale (NOS) and GRADE (Grading of Recommendations Assessment, Development, and Evaluation) pro-GDT were applied to assess the quality of all studies. Publication bias was estimated by funnel plot, Egger's rank correlation test and sensitivity analysis. RESULTS: Eleven studies (891patients) were included, of which 6 reported up-regulated miRNAs and 7 mentioned down-regulated miRNAs. The pooled hazard ratio (HR) from the prognostic indicator overall survival (OS) was 1.34 (1.25-1.44), p < 0.00001, indicating a significant difference in miRNA expression between TSCC patients with better or worse prognosis. CONCLUSION: MiRNAs may have high prognostic value and could be used as prognostic biomarkers of TSCC.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/genética , Prognóstico , Neoplasias da Língua/genética , Neoplasias da Língua/patologia , Biomarcadores Tumorais/análise , MicroRNAs/genética , MicroRNAs/metabolismo , Língua/patologia
5.
BMC Cancer ; 24(1): 400, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561726

RESUMO

BACKGROUND: This study evaluated the clinical relevance of a set of five serum-derived circulating microRNAs (miRNAs) in colorectal cancer (CRC). Additionally, we investigated the role of miR-20a-5p released by exosomes derived from cancer-associated fibroblasts (CAFs) in the context of CRC. METHODS: The expression levels of five circulating serum-derived miRNAs (miR-20a-5p, miR-122-5p, miR-139-3p, miR-143-5p, and miR-193a-5p) were quantified by real-time quantitative PCR (RT-qPCR), and their associations with clinicopathological characteristics in CRC patients were assessed. The diagnostic accuracy of these miRNAs was determined through Receiver Operating Characteristic (ROC) curve analysis. CAFs and normal fibroblasts (NFs) were isolated from tissue samples, and subsequently, exosomes derived from these cells were isolated and meticulously characterized using electron microscopy and Western blotting. The cellular internalization of fluorescent-labeled exosomes was visualized by confocal microscopy. Gain- and loss-of-function experiments were conducted to elucidate the oncogenic role of miR-20a-5p transferred by exosomes derived from CAFs in CRC progression. The underlying mechanisms were uncovered through luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assays, as well as proliferation and migration assays. RESULTS: The expression levels of serum-derived circulating miR-20a-5p and miR-122-5p were significantly higher in CRC and were positively correlated with advanced stages of tumorigenesis and lymph node metastasis (LNM). In contrast, circulating miR-139-3p, miR-143-5p, and miR-193a-5p were down-regulated in CRC and associated with early tumorigenesis. Except for miR-139-3p, they showed a negative correlation with LNM status. Among the candidate miRNAs, significantly elevated levels of miR-20a-5p were observed in both cellular and exosomal fractions of CAFs. Our findings indicated that miR-20a-5p induces the expression of EMT markers, partly by targeting PTEN. Exosomal miR-20a secreted by CAFs emerged as a key factor enhancing the proliferation and migration of CRC cells. The inhibition of miR-20a impaired the proliferative and migratory potential of CAF-derived exosomes in SW480 CRC cells, suggesting that the oncogenic effects of CAF-derived exosomes are mediated through the exosomal transfer of miR-20a. Furthermore, exosomes originating from CAFs induced increased nuclear translocation of the NF-kB p65 transcription factor in SW480 CRC cells, leading to increased interleukin-6 (IL-6) production. CONCLUSIONS: We established a set of five circulating miRNAs as a non-invasive biomarker for CRC diagnosis. Additionally, our findings shed light on the intricate mechanisms underpinning the oncogenic impacts of CAF-derived exosomes and underscore the pivotal role of miR-20a-5p in CRC progression.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-6/genética , Interleucina-6/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
6.
J Transl Med ; 22(1): 323, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561750

RESUMO

BACKGROUND: MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model. METHODS: A murine SSc model was induced by subcutaneously injecting 100 µg bleomycin dissolved in 0.9% NaCl into C57BL/6 mice daily for 5 weeks. On days 14, 21, and 28 from the start of bleomycin injection, 100 µg pre-miRNA-21a-5p or anti-miRNA-21a-5p in 1 mL saline was hydrodynamically injected into the mice. Fibrosis analysis was conducted in lung and skin tissues of SSc mice using hematoxylin and eosin as well as Masson's trichrome staining. Immunohistochemistry was used to examine the expression of inflammatory cytokines, phosphorylated signal transducer and activator of transcription-3 (STAT3) at Y705 or S727, and phosphatase and tensin homologue deleted on chromosome-10 (PTEN) in skin tissues of SSc mice. RESULTS: MiRNA-21a-5p overexpression promoted lung fibrosis in bleomycin-induced SSc mice, inducing infiltration of cells expressing TNF-α, IL-1ß, IL-6, or IL-17, along with STAT3 phosphorylated cells in the lesional skin. Conversely, anti-miRNA-21a-5p injection improved fibrosis in the lung and skin tissues of SSc mice, reducing the infiltration of cells secreting inflammatory cytokines in the skin tissue. In particular, it decreased STAT3-phosphorylated cell infiltration at Y705 and increased the infiltration of PTEN-expressing cells in the skin tissue of SSc mice. CONCLUSION: MiRNA-21a-5p promotes fibrosis in an in vivo murine SSc model, suggesting that its inhibition may be a therapeutic strategy for improving fibrosis in SSc.


Assuntos
MicroRNAs , Escleroderma Sistêmico , Animais , Camundongos , Bleomicina , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/induzido quimicamente , Pele/patologia
7.
Arch Virol ; 169(5): 88, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565755

RESUMO

Transcription of the covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is subject to dual regulation by host factors and viral proteins. MicroRNAs (miRNAs) can regulate the expression of target genes at the post-transcriptional level. Systematic investigation of miRNA expression in HBV infection and the interaction between HBV and miRNAs may deepen our understanding of the transcription mechanisms of HBV cccDNA, thereby providing opportunities for intervention. miRNA sequencing and real-time quantitative PCR (qRT-PCR) were used to analyze miRNA expression after HBV infection of cultured cells. Clinical samples were analyzed for miRNAs and HBV transcription-related indicators, using qRT-PCR, enzyme-linked immunoassay (ELISA), and Western blot. miRNA mimics or inhibitors were used to study their effects on the HBV life cycle. The target genes of miR-3188 and their roles in HBV cccDNA transcription were also identified. The expression of 10 miRNAs, including miR-3188, which was significantly decreased after HBV infection, was measured in clinical samples from patients with chronic HBV infection. Overexpression of miR-3188 inhibited HBV transcription, whereas inhibition of miR-3188 expression promoted HBV transcription. Further investigation confirmed that miR-3188 inhibited HBV transcription by targeting Bcl-2. miR-3188 is a key miRNA that regulates HBV transcription by targeting the host protein Bcl-2. This observation provides insights into the regulation of cccDNA transcription and suggests new targets for anti-HBV treatment.


Assuntos
Hepatite B Crônica , Hepatite B , MicroRNAs , Humanos , DNA Circular/genética , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transcrição Viral , Replicação Viral/genética
8.
FASEB J ; 38(7): e23589, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572594

RESUMO

Breast cancer antiestrogen resistance 4 (BCAR4) has been suggested that can modulate cell behavior, resulting in tumorigenesis and chemoresistance. However, the underlying mechanisms of BCAR4 in trastuzumab resistance (TR) is still elusive. Here, we explored the function and the underlying mechanism of BCAR4 involving in TR. We found that BCAR4 is significantly upregulated in trastuzumab-resistant BC cells. Knockdown of BCAR4 could sensitize the BC cells to trastuzumab and suppress epithelial-mesenchymal transition (EMT). Mechanically, BCAR4 promotes yes-associated protein 1 (YAP1) expression by competitively sponging miR-665, to activated TGF-ß signaling. Reciprocally, YAP1 could occupy the BCAR4 promoter to enhance its transcription, suggesting that there exists a positive feedback regulation between YAP1 and BCAR4. Targeting the BCAR4/miR-665/YAP1 axis may provide a novel insight of therapeutic approaches for TR in BC.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica
9.
FASEB J ; 38(7): e23598, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581244

RESUMO

The precise molecular mechanism behind fetal growth restriction (FGR) is still unclear, although there is a strong connection between placental dysfunction, inadequate trophoblast invasion, and its etiology and pathogenesis. As a new type of non-coding RNA, circRNA has been shown to play a crucial role in the development of FGR. This investigation identified the downregulation of hsa_circ_0034533 (circTHBS1) in FGR placentas through high-sequencing analysis and confirmed this finding in 25 clinical placenta samples using qRT-PCR. Subsequent in vitro functional assays demonstrated that silencing circTHBS1 inhibited trophoblast proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression and promoted apoptosis. Furthermore, when circTHBS1 was overexpressed, cell function experiments showed the opposite result. Analysis using fluorescence in situ hybridization revealed that circTHBS1 was primarily found in the cytoplasmic region. Through bioinformatics analysis, we anticipated the involvement of miR-136-3p and IGF2R in downstream processes, which was subsequently validated through qRT-PCR and dual-luciferase assays. Moreover, the inhibition of miR-136-3p or the overexpression of IGF2R partially reinstated proliferation, migration, and invasion abilities following the silencing of circTHBS1. In summary, the circTHBS1/miR-136-3p/IGF2R axis plays a crucial role in the progression and development of FGR, offering potential avenues for the exploration of biological indicators and treatment targets.


Assuntos
MicroRNAs , Feminino , Humanos , Gravidez , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Retardo do Crescimento Fetal/metabolismo , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
10.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583436

RESUMO

The treatment of patients with acute pulmonary embolism (APE) is extremely challenging due to the complex clinical presentation and prognosis of APE related to the patient's hemodynamic status and insufficient arterial blood flow and right ventricular overload. Protective efficacy against cardiovascular diseases of curcumin, a common natural polyphenolic compound, which has antithrombotic properties and reduces platelet accumulation in the circulation by inhibiting thromboxane synthesis has been demonstrated. However, the direct effect of curcumin on APE has rarely been studied. Therefore, the present study aimed to investigate the therapeutic potential of curcumin in APE and associated myocardial injury to provide new insights into curcumin as a promising competitive new target for the treatment of APE. A suspension of 12 mg/kg microspheres was injected intravenously into rats. An APE rat model was built. Before modeling, intragastric 100 mg/kg curcumin was given, and/or lentiviral plasmid vector targeting microRNA-145-5p or insulin receptor substrate 1 (IRS1) was injected. Pulmonary artery pressure was measured to assess right ventricular systolic pressure (RVSP). Hematoxylin and eosin (H&E) staining was performed on liver tissues and myocardial tissues of APE rats. TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling) staining and immunohistochemical (IHC) staining were conducted to measure apoptosis and CyPA-CD147 expression in the myocardium, respectively. Inflammatory indices interleukin-1beta (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were measured by ELISA in cardiac tissues. RT-qPCR and Western blot were performed to determine the expression levels of related genes. In addition, by dual luciferase reporter assay and RIP assay, the relationship between microRNA-145-5p and insulin receptor substrate 1 (IRS1) was confirmed. In results: curcumin improved APE-induced myocardial injury, reduced myocardial tissue edema, and thrombus volume. It attenuated APE-induced myocardial inflammation and apoptosis, as well as reduced lung injury and pulmonary artery pressure. Curcumin promoted microRNA-145-5p expression in APE rat myocardium. MicroRNA-145-5p overexpression protected against APE-induced myocardial injury, and microRNA-145-5p silencing abolished the beneficial effects of curcumin in APE-induced myocardial injury. IRS1 was targeted by microRNA-145-5p. IRS1 silencing attenuated APE-induced myocardial injury, and enhanced therapeutic effect of curcumin on myocardial injury in APE rats. In conclusion, curcumin alleviates myocardial inflammation, apoptosis, and oxidative stress induced by APE by regulating microRNA-145-5p/IRS1 axis.


Assuntos
Curcumina , Hominidae , MicroRNAs , Miocardite , Embolia Pulmonar , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-6/metabolismo , Apoptose , Inflamação/tratamento farmacológico , Estresse Oxidativo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/genética , Hominidae/genética , Hominidae/metabolismo
11.
Sci Rep ; 14(1): 8243, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589413

RESUMO

The role of circular RNA (circRNAs) in hepatocellular carcinoma (HCC) has been extensively studied. Previous research has highlighted the regulatory role of circSNX6 in HCC cells and tissues. However, the precise mechanism underlying HCC progression still requires comprehensive investigation. The study initially utilized quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to assess circSNX6 expression levels in HCC cell lines and tissues. Subsequently, the stability of circRNA was evaluated through Ribonuclease R and actinomycin D treatment assays. The impact of circSNX6 knockdown on proliferation, migration, invasion, and angiogenesis abilities was determined using various assays including colony formation, Transwell culture system, tube formation assay, and cell counting kit (CCK)-8 assays. Additionally, RNA immunoprecipitation chip and dual-luciferase reporter assays were employed to investigate the interactions between circSNX6 and miR-383-5p. Finally, an HCC xenograft tumor model in mice was established to assess the in vivo expression of circSNX6 and its functional role in HCC. Our findings revealed an elevated circSNX6 expression in HCC tissues, which was correlated with poor patient prognosis. Knockdown of circSNX6 suppressed HCC cell growth, invasion, metastasis, and angiogenesis. The downregulation of miR-383-5p, a target of circSNX6, significantly attenuated the tumor-suppressive effects induced by circSNX6 knockdown. Moreover, circSNX6 was found to modulate VEGFA expression by targeting miR-383-5p. The inhibition of HCC cell proliferation by miR-383-5p could be partially reversed by overexpressing VEGFA. Silencing circSNX6 also suppressed tumor formation and the metastasis of HCC cells in a mouse model. In summary, our findings suggest that circSNX6 promotes cell proliferation, metastasis, and angiogenesis in HCC by regulating the miR-383-5p/VEGFA pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/patologia , 60489 , Linhagem Celular Tumoral , Transdução de Sinais , RNA Circular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Sci Rep ; 14(1): 8246, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589525

RESUMO

MicroRNAs are small RNA molecules that have a significant role in translational repression and gene silencing through binding to downstream target mRNAs. MiR-762 can stimulate the proliferation and metastasis of various types of cancer. Hippo pathway is one of the pathways that regulate tissue development and carcinogenesis. Dysregulation of this pathway plays a vital role in the progression of cancer. This study aimed to evaluate the possible correlation between miR-762, the Hippo signaling pathway, TWIST1, and SMAD3 in patients with lung cancer, as well as patients with chronic inflammatory diseases. The relative expression of miR-762, MST1, LATS2, YAP, TWIST1, and SMAD3 was determined in 50 lung cancer patients, 30 patients with chronic inflammatory diseases, and 20 healthy volunteers by real-time PCR. The levels of YAP protein and neuron-specific enolase were estimated by ELISA and electrochemiluminescence immunoassay, respectively. Compared to the control group, miR-762, YAP, TWIST1, and SMAD3 expression were significantly upregulated in lung cancer patients and chronic inflammatory patients, except SMAD3 was significantly downregulated in chronic inflammatory patients. MST1, LATS2, and YAP protein were significantly downregulated in all patients. MiR-762 has a significant negative correlation with MST1, LATS2, and YAP protein in lung cancer patients and with MST1 and LATS2 in chronic inflammatory patients. MiR-762 may be involved in the induction of malignant behaviors in lung cancer through suppression of the Hippo pathway. MiR-762, MST1, LATS2, YAP mRNA and protein, TWIST1, and SMAD3 may be effective diagnostic biomarkers in both lung cancer patients and chronic inflammatory patients. High YAP, TWIST1, SMA3 expression, and NSE level are associated with a favorable prognosis for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Via de Sinalização Hippo , Transdução de Sinais , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Crônica , Proliferação de Células/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Zhongguo Fei Ai Za Zhi ; 27(3): 161-169, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38590190

RESUMO

BACKGROUND: Lung cancer is a common malignant tumor of the lung. To explore the molecular mechanism of the occurrence and development of lung cancer is a hot topic in current research. Cyclic RNA D1 (CircCCND1) is highly expressed in lung cancer and may be a potential target for the treatment of lung cancer. The aim of this study was to investigate the effect of CircCCND1 on the malignant biological behaviors of lung cancer cells by regulating the miR-340-5p/transforming growth factor ß-induced factor homeobox 1 (TGIF1) axis. METHODS: The expression of CircCCND1, miR-340-5p, and TGIF1 mRNA in human normal lung epithelial cells BEAS-2B and human lung cancer H446 cells were detected. H446 cells cultured in vitro were randomly divided into control group, CircCCND1 siRNA group, miR-340-5p mimics group, negative control group, and CircCCND1 siRNA+miR-340-5p inhibitor group. Cell proliferation, mitochondrial membrane potential, apoptosis, migration, and invasion were detected, and the expressions of CircCCND1, miR-340-5p, TGIF1 mRNA, BCL2-associated X protein (Bax), cleaved Caspase-3, N-cadherin, E-cadherin, and TGIF1 proteins in each group were detected. The targeting relationship of miR-340-5p with CircCCND1 and TGIF1 was verified. RESULTS: Compared with BEAS-2B cells, CircCCND1 and TGIF1 mRNA were increased in H446 cells, and miR-340-5p expression was decreased (P<0.05). Knocking down CircCCND1 or up-regulating the expression of miR-340-5p inhibited the proliferation, migration and invasion of H446 cells, decreased the expression of TGIF1 mRNA and TGIF1 protein, and promoted cell apoptosis. Down-regulation of miR-340-5p could antagonize the inhibitory effect of CircCCND1 knockdown on the malignant biological behavior of H446 lung cancer cells. CircCCND1 may target the down-regulation of miR-340-5p, and miR-340-5p may target the down-regulation of TGIF1. CONCLUSIONS: Knocking down CircCCND1 can inhibit the malignant behaviors of lung cancer H446 cells, which may be achieved through the regulation of miR-340-5p/TGIF1 axis.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pulmão/patologia , RNA Mensageiro , RNA Interferente Pequeno , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética , Proteínas de Homeodomínio/genética
14.
Int J Colorectal Dis ; 39(1): 48, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584226

RESUMO

OBJECTIVE: In this study, we investigated the impact of perioperative administration of Bifidobacterium triplex viable capsules on the serum levels of circulating miR-21-5p, miR-135-5p, and miR-155-5p in patients with colorectal cancer (CRC). The purpose of this study is to provide a foundation for future research on the use of Bifidobacterium triplex viable capsules to enhance postoperative recovery in patients with CRC. METHODS: A total of 60 patients with primary CRC admitted to the Department of General Surgery at Shanxi Bethune Hospital between June 2020 and December 2020 were selected and randomly divided into two groups: 20 cases in the control group and 40 cases in the experimental group. The experimental group was administered oral Bifidobacterium triplex viable capsules during the perioperative period, while the control group was administered oral placebo. Before and after the perioperative period, the expression levels of miR-21-5p, miR-135-5p, and miR-155-5p were compared in the serum of both groups of patients. Furthermore, we established the prognostic value of these three miRNAs in CRC patients. RESULTS: After surgery, the expression levels of miR-21-5p, miR-135-5p, and miR-155-5p decreased in both groups of patients (P < 0.05). Significantly greater differences were observed between miR-21-5p and miR-135-5p (P < 0.001). Expression levels of serum miR-21-5p (P = 0.020) and miR-135-5p (P = 0.023) decreased significantly more in the experimental group than in the control group. The levels of the above three miRNAs after surgery did not correlate with 3-year OS (HR = 4.21; 95% CI 0.37-47.48; log-rank P = 0.20) or 3-year DFS (HR = 1.57; 95% CI 0.32-7.66; log-rank P = 0.55) in two groups. CONCLUSION: Radical surgery reduces the levels of serum miR-21-5p, miR-135-5p, and miR-155-5p expression in patients with CRC. The use of Bifidobacterium triplex viable capsules assists in achieving quicker perioperative recovery from radical surgery in CRC patients, and this underlying mechanism may be associated with the regulation of serum miR-21-5p, miR-135-5p, and miR-155-5p expression levels.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Regulação Neoplásica da Expressão Gênica
15.
Front Immunol ; 15: 1355315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558807

RESUMO

Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.


Assuntos
Síndrome de Ativação Macrofágica , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de IgG/genética , Síndrome de Ativação Macrofágica/genética , Fagocitose/genética , Interleucina-12
16.
J Cancer Res Clin Oncol ; 150(4): 179, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584230

RESUMO

PURPOSE: The present study aims to determine the molecular mechanism mediated by RAD51 antisense RNA 1 (RAD51-AS1) in ovarian cancer (OvCA). METHODS: The data associated with RAD51-AS1 in OvCA were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Relative expression of RAD51-AS1 was detected. Determination of cell proliferation, metastasis, and invasion was performed by cell counting, colony formation, would-healing, and transwell invasion assays. Protein levels were detected by western blotting. The molecular mechanism mediated by RAD51-AS1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. Subcutaneous tumorigenesis models were used to confirm the function of RAD51-AS1 in vivo. RESULTS: Data from TCGA and GEO showed that RAD51-AS1 was associated with poor prognosis in OvCA patients and DNA repair, cell cycle, focal adhesion, and apoptosis in SKOV3.ip cells. High levels of RAD51-AS1 were detected in OvCA cells. Overexpressing RAD51-AS1 enhanced the proliferative, invading, and migratory capabilities of OvCA cells in vitro while silencing RAD51-AS1 exhibited the opposite effects. Mechanically, RAD51-AS1 elevated eukaryotic initiation factor 5A2 (EIF5A2) expression as a sponge for microRNA (miR)-140-3p. Finally, the role of RAD51-AS1 was verified by subcutaneous tumorigenesis models. CONCLUSION: RAD51-AS1 promoted OvCA progression by the regulation of the miR-140-3p/EIF5A2 axis, which illustrated the potential therapeutic target for OvCA.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Rad51 Recombinase/genética , RNA Longo não Codificante/genética
17.
Elife ; 132024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639482

RESUMO

Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.


Assuntos
MicroRNAs , Sêmen , Masculino , Animais , Camundongos , Sêmen/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mamíferos/genética
18.
Planta ; 259(6): 128, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639776

RESUMO

MAIN CONCLUSION: Differential expression of 128 known and 111 novel miRNAs in the panicle of Nagina 22 under terminal drought stress targeting transcription factors, stress-associated genes, etc., enhances drought tolerance and helps sustain agronomic performance under terminal drought stress. Drought tolerance is a complex multigenic trait, wherein the genes are fine-tuned by coding and non-coding components in mitigating deleterious effects. MicroRNA (miRNA) controls gene expression at post-transcriptional level either by cleaving mRNA (transcript) or by suppressing its translation. miRNAs are known to control developmental processes and abiotic stress tolerance in plants. To identify terminal drought-responsive novel miRNA in contrasting rice cultivars, we constructed small RNA (sRNA) libraries from immature panicles of drought-tolerant rice [Nagina 22 (N 22)] and drought-sensitive (IR 64) cultivars grown under control and terminal drought stress. Our analysis of sRNA-seq data resulted in the identification of 169 known and 148 novel miRNAs in the rice cultivars. Among the novel miRNAs, 68 were up-regulated while 43 were down-regulated in the panicle of N 22 under stress. Interestingly, 31 novel miRNAs up-regulated in N 22 were down-regulated in IR 64, whereas 4 miRNAs down-regulated in N 22 were up-regulated in IR 64 under stress. To detect the effects of miRNA on mRNA expression level, transcriptome analysis was performed, while differential expression of miRNAs and their target genes was validated by RT-qPCR. Targets of the differentially expressed miRNAs include transcription factors and stress-associated genes involved in cellular/metabolic/developmental processes, response to abiotic stress, programmed cell death, photosynthesis, panicle/seed development, and grain yield. Differential expression of the miRNAs could be validated in an independent set of the samples. The findings might be useful in genetic improvement of drought-tolerant rice.


Assuntos
MicroRNAs , Oryza , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/fisiologia , Secas , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Fatores de Transcrição/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética
19.
Physiol Plant ; 176(2): e14293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641970

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Cell Mol Biol Lett ; 29(1): 56, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643083

RESUMO

During growth phase, antlers exhibit a very rapid rate of chondrogenesis. The antler is formed from its growth center reserve mesenchyme (RM) cells, which have been found to be the derivatives of paired related homeobox 1 (Prrx1)-positive periosteal cells. However, the underlying mechanism that drives rapid chondrogenesis is not known. Herein, the miRNA expression profiles and chromatin states of three tissue layers (RM, precartilage, and cartilage) at different stages of differentiation within the antler growth center were analyzed by RNA-sequencing and ATAC-sequencing. We found that miR-140-3p was the miRNA that exhibited the greatest degree of upregulation in the rapidly growing antler, increasing from the RM to the cartilage layer. We also showed that Prrx1 was a key upstream regulator of miR-140-3p, which firmly confirmed by Prrx1 CUT&Tag sequencing of RM cells. Through multiple approaches (three-dimensional chondrogenic culture and xenogeneic antler model), we demonstrated that Prrx1 and miR-140-3p functioned as reciprocal negative feedback in the antler growth center, and downregulating PRRX1/upregulating miR-140-3p promoted rapid chondrogenesis of RM cells and xenogeneic antler. Thus, we conclude that the reciprocal negative feedback between Prrx1 and miR-140-3p is essential for balancing mesenchymal proliferation and chondrogenic differentiation in the regenerating antler. We further propose that the mechanism underlying chondrogenesis in the regenerating antler would provide a reference for helping understand the regulation of human cartilage regeneration and repair.


Assuntos
Chifres de Veado , MicroRNAs , Animais , Humanos , Condrogênese/genética , Retroalimentação , Cartilagem/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA